
Programming Laboratory III Third Year Engineering

Programming Laboratory III Third Year Engineering

A Laboratory Manual for

Programming Laboratory III
(310254) Semester – VI

(Computer Engineering)
Bachelor Degree in Engineering

UNIVERSITY OF PUNE, GANESHKHIND

SNJB’S LATE SAU. KBJ COLLEGE OF ENGINEERING, CHANDWAD

DEPARTMENT OF COMPUTER ENGINEERING

Programming Laboratory III Third Year Engineering

LABORATORY MANUAL DEVELOPMENT PROJECT

Designations Team for design

Project Institution Shri Neminath Jain
Bramhacharyashram’s KBJ
College of Engineering,
Neminagar, Chandwad -

Project Commencement June 2014

Head Of Institution Dr.J J Chopde,
SNJB’s KBJ College of Engineering,
Neminagar, Chandwad -423101.

Chief Project
Coordinator

Prof. M .R. Sanghavi
Head,Department Of Computer Engineering
SNJB’s, KBJ College of Engineering,
Neminagar, Chandwad -423101.

Project Coordinator Prof. Ms. K. S. Kotecha
AssociateProfessor,
Department Of Computer Engineering,
SNJB’s KBJ College of Engineering,
Neminagar, Chandwad -423101.

Subject Expert Prof. S. B. Ambhore and Prof. A. L. Maind
Assistant Professor,
Department of Computer Engineering,
SNJB’s KBJ Collegeof Engineering,
Neminagar, Chandwad-423101

Programming Laboratory III Third Year Engineering

SNJB’S LATE SAU. KBJ COLLEGE OF ENGINEERING, CHANDWAD

DEPARTMENT OF COMPUTER ENGINEERING

Certificate

This is Certify that Mr./Ms. Roll No _ of Seventh

Semester of Bachelor Engineering in Computer has completed the term work

satisfactorily in Programming Laboratory III in the Academic Year 20_ to20 as

prescribed in the curriculum.

Place:

Date: Exam Seat No.

Subject Teacher Head of Department Principal

Stamp of
Institution

5SNJB’s .K B J COLLEGE OF ENGINEERING CHANDWAD

[Type text]

List of Experiment and Record of Progressive Assessment

Serial
No.

Name of Experiment Page
No

Date of
Performan

Date of
Submission

Assess
ment

Signature
of Faculty

Group A
1 Develop an application using Beeglebone

Black/ ARM Cortex A5 development
board to simulate the operations of LIFT

2 Develop an application using Beeglebone
Black/ ARM Cortex A5 development
board to simulate the working of signal
lights.

3 Implement an calculator (64 bit Binary
Multiplication) application using
concurrent lisp

4

Apply the Following Software
Engineering to all assignments(No 1,2,3
of Group A and B). Mathematical
Modeling must result into UML
Requirements. Apply Assignment No 4a
to 4d for all Group A and Group B
assignments of Embedded Operating
system and Concurrent and Distributed
Programming. Use tools Open source
tools like ArgoUML, UMLLet, StarUML
or equivalent tools for UML models)
Or Use Agile or Scrum-Agile
ethodologies and Tools.Use of Possitive
and Negative Testing.

4a
Design mathematical model of the
Application/system using set theory,
algebraic system, relations and functions,
Deterministic and Non-Deterministic
entities.

4b

Analyze requirements from the Problem
statement, mathematical model, Domain
requirements and identify Functional,
Non functional, Actors, Usecases for the
application/system. Create usecase
diagram, activity diagram/swimlane
diagram for each usecase.

4c

Design the architecture for the system
/application using package diagram ,
deployment diagram. Design classes
using class diagram.

4d
Design the behavior of the system
/application using state machine diagram
and sequence diagram.

6SNJB’s .K B J COLLEGE OF ENGINEERING CHANDWAD

[Type text]

5

Create Project plan, SRS, Design
document and Test Plan for one group-C
assignment from embedded operating
system or Concurrent and Distributed
Programming

6
Write an application to parse input text
file concurrently and compare the result
of concurrent parsing with serial parsing
(Use concurrent YACC parser)

Group B

 1

Write an application to and
demonstrate the change in
BeagleBoard/ ARM Cortex A5
Microprocessor /CPU frequency or
square wave of programmable

 3
Vedic Mathematics method to find
square of 2-digit number is used in a
distributed programming. Use shared
memory and distributed (multi-CPU)
programming to complete the task.

4 Implement a Parallel ODD-Even Sort
algorithm using GPU or ARM
equivalent.

7

Implement nxn matrix parallel
multiplication using CUDA/OpenCL
GPU, use shared
memory.

8 Develop a network based application
by setting IP address on BeagleBoard/
ARM
Cortex A5.

 9

Implement a Multi-threading
application for echo server using socket
programming in
JAVA

 10 Implement Reader-Writer problem
using OPENMP

Group C

 1 Develop Robotics(stepper motor)
Application using Beagle Board.

Total:

7SNJB’s .K B J COLLEGE OF ENGINEERING CHANDWAD

[Type text]

Assignment: 1

Regularity (2) Performance(5) Oral(3) Total (10) Dated Sign

Title of Assignment: Simulation of LIFT operations

Problem Definition: Develop an application using Beaglebone Black/ ARM Cortex A5
development board to simulate the operations of LIFT.

1.1 Perquisite: Beaglebone Black, minicom

1.2 Learning Objective: To simulate the operations of LIFT on BBB.

1.3 Relevant Theory / Literature Survey:

1.3 Introduction

The element14 BeagleBone Black is identical in technical design and functionality as
the specified BeagleBoard.org product (BeagleBone Black) and runs on the version of the
software provided by BeagleBoard.org to element14. General support for this board is available
from the BeagleBoard.org community.
1.4 Setup:

1. Connect beaglebone black to PC with +5v supply and USB cable.
2. Open terminal in ubuntu.
3. Type sudo su ---enter

Type password--enter
4. Then type minicom –s---enter
5. Goto serial port setup-�

• Press A
• Change /dev/ttyxx to /dev/ttyACM0—enter
• Press G
• Press Enter

6. Save setup as dfl – enter
7. Goto EXIT – enter
8. Now system will boot and then type username and password
 and you booted into beaglebone black.
9. Type su –enter.

1.5 CONNECTOR DETAILS:

8SNJB’s .K B J COLLEGE OF ENGINEERING CHANDWAD

[Type text]

Connector
Number

PIN

Number

PIN Description PIN connects to board Function

P9 1,2 GND GND(25pin) GND

P9 3,4 VCC(3.6V) VCC(26pin) VCC

P8 7 GPIO2[2] FRC-6pin In

P8 8 GPIO2[3] FRC-5pin In

P8 9 GPIO2[5] FRC-4pin In

P8 10 GPIO2[4] FRC-3pin In

P8 11 GPIO1[13] FRC-13pin Out

P8 12 GPIO1[12] FRC-14pin Out

P8 13 GPIO0[23] FRC-11pin Out

P8 14 GPIO0[26] FRC-12pin Out

P8 15 GPIO1[15] FRC-9pin Out

P8 16 GPIO1[14] FRC-10pin Out

P8 17 GPIO0[27] FRC-7pin Out

P8 18 GPIO2[1] FRC-8pin Out

P8 19 GPIO0[22] FRC-23pin Out

P8 21 GPIO1[30] FRC-24pin Out

P9 11 GPIO0[30] FRC-21pin Out

P9 12 GPIO1[28] FRC-22pin Out

P9 13 GPIO0[31] FRC-19pin Out

P9 14 GPIO1[18] FRC-20pin Out

P9 15 GPIO1[16] FRC-17pin Out

9SNJB’s .K B J COLLEGE OF ENGINEERING CHANDWAD

[Type text]

P9 16 GPIO1[19] FRC-18pin Out

P9 23 GPIO1[17] FRC-16pin Out

P9 24 GPIO0[15] FRC-15pin Out

TABLE 1

1.6 How to get GPIO pin number:

• Once you have decided the pin number which you would like to use as a GPIO, you need to
find out its corresponding reference number.

• For example, if you would like to use pin 12 on P8 expansion header, Then find out its default
function. Note down the entire signal name. In this case, pin 12 is GPIO1_12.So any GPIO you
come across would be referenced as GPIOX_Y. Identify X,Y.

• Use the formula below to find the corresponding reference number:
Reference number =((X*32)+ Y)
Hence, pin 12 would be referenced as gpio 44 in the kernel.

1.7 To use GPIO pin as GPIO in programs follow the steps :

• To make GPIO pin xx as output type command in terminal(xx—pin
 number)

echo xx > /sys/class/gpio/export -- press enter
echo out > /sys/class/gpio/gpioxx/direction --press enter
for example:
echo 44 > /sys/class/gpio/export
echo out > /sys/class/gpio/gpio44/direction

• To make GPIO pin xx as input type command in terminal(xx—pin
 number)

echo xx > /sys/class/gpio/export -- press enter
echo in > /sys/class/gpio/gpioxx/direction --press enter
for example:
echo 44 > /sys/class/gpio/export
echo in > /sys/class/gpio/gpio44/direction

• After making GIPO pin as output, To change the initial value of
 output pin type command in

terminal(x—1/0,xx—pin number)
echo x > /sys/class/gpio/gpioxx/value –press enter
for example:
echo 0 > /sys/class/gpio/gpio44/value
OR
echo 1 > /sys/class/gpio/gpio44/value

1.8 PROCEDURE:

1. Make a connection as shown in above Table1.
2. Make pin as input or output as told in function block of Table1.

10SNJB’s .K B J COLLEGE OF ENGINEERING CHANDWAD

[Type text]

Export pins :
echo 45 > /sys/class/gpio/export

3. Make New folder with name Lift elevator and go to that folder using
 command

mkdir lift_elevator—press enter
 cd lift_elevator—press enter
4. Create and open a file with command
 vim lift_elevator.cpp
5. Write a program and save it.
6. Now compile and run the program using command
 g++ lift_elevator.cpp -o lift_elevator –press enter
 ./lift_elevator –press enter

1.9 Oral Questions:

1) What are the steps to enter BBB?
2) What is difference between OS and EOS?

11SNJB’s .K B J COLLEGE OF ENGINEERING CHANDWAD

[Type text]

Assignment: Group A2

Regularity (2) Performance(5) Oral(3) Total (10) Dated Sign

Title of Assignment: Simulation of signal lights operations

Problem Definition: Develop an application using Beeglebone Black/ ARM Cortex A5
development board to simulate the working of signal lights.

2.1 Perquisite: Beaglebone Black, minicom

2.2 Learning Objective: To simulate the operations of signal lights operations on BBB.

2.3 Relevant Theory / Literature Survey:

2.3.1 Introduction:
The element14 BeagleBone Black is identical in technical design and functionality as

the specified BeagleBoard.org product (BeagleBone Black) and runs on the version of the
software provided by BeagleBoard.org to element14. General support for this board is available
from the BeagleBoard.org community.

2.3.2 Setup:
2. Connect beaglebone black to PC with +5v supply and USB cable.
3. Open terminal in ubuntu.
3. Type sudo su ---enterType password.
4. Then type minicom –s---enter
5. Goto serial port setup-�

• Press A
• Change /dev/ttyUSBxx to /dev/ttyACM0—enter
• Press G
• Press Enter

6. Save setup as dfl – enter
7. Goto EXIT – enter
8. Now system will boot and then type username and password
 and you booted into beaglebone black.
9. Type su –enter.

12SNJB’s .K B J COLLEGE OF ENGINEERING CHANDWAD

[Type text]

2.4 CONNECTOR DETAILS:

Connector
Number

PIN

Number

PIN Description PIN connects to accessory
board

Function

P9 1,2 GND GND(25pin) GND

P9 5 VCC(5V) VCC(26pin) VCC

P9 11 GPIO0[30] FRC21pin Out

P9 12 GPIO1[28] FRC-22pin Out

P9 13 GPIO0[31] FRC-19pin Out

P9 14 GPIO1[18] FRC-20pin Out

P9 15 GPIO1[16] FRC-17pin Out

P9 16 GPIO1[19] FRC-18pin Out

P9 24 GPIO0[15] FRC-15pin Out

P9 23 GPIO1[17] FRC-16pin Out

P8 11 GPIO1[13] FRC-13pin Out

P8 12 GPIO1[12] FRC-14pin Out

P8 13 GPIO0[23] FRC-11pin Out

P8 14 GPIO0[26] FRC-12pin Out

P8 15 GPIO1[15] FRC-9pin Out

P8 16 GPIO1[14] FRC-10pin Out

P8 17 GPIO0[27] FRC-7pin Out

P8 18 GPIO2[1] FRC-8pin Out

 TABLE 1

13SNJB’s .K B J COLLEGE OF ENGINEERING CHANDWAD

[Type text]

2.5 How to get GPIO pin number:

• Once you have decided the pin number which you would like to use
 as a GPIO, you need to find out its corresponding reference number.
• For example, if you would like to use pin 12 on P8 expansion header,
 Then find out its default function. Note down the entire signal name.
 In this case, pin 12 is GPIO1_12.So any GPIO you come across
 would be referenced as GPIOX_Y. Identify X,Y.
• Use the formula below to find the corresponding reference number:

Reference number =((X*32)+ Y)
Hence, pin 12 would be referenced as gpio 44 in the kernel.

2.6 To use GPIO pin as GPIO in programs follow the steps:

• To make GPIO pin xx as output type command in terminal(xx—pin
 number)

echo xx > /sys/class/gpio/export -- press enter
echo out > /sys/class/gpio/gpioxx/direction --press enter
for example:
echo 44 > /sys/class/gpio/export
echo out > /sys/class/gpio/gpio44/direction

• To make GPIO pin xx as input type command in terminal(xx—pin
 number)

echo xx > /sys/class/gpio/export -- press enter
echo in > /sys/class/gpio/gpioxx/direction --press enter
for example:
echo 44 > /sys/class/gpio/export
echo in > /sys/class/gpio/gpio44/direction

• After making GIPO pin as output, To change the initial value of

14SNJB’s .K B J COLLEGE OF ENGINEERING CHANDWAD

[Type text]

 output pin type command in terminal(x—1/0,xx—pin number)
echo x > /sys/class/gpio/gpioxx/value –press enter
for example:
echo 0 > /sys/class/gpio/gpio44/value
OR
echo 1 > /sys/class/gpio/gpio44/value

2.7 PROCEDURE:

1. Make a connection as shown in above Table1.
2. Make pin as input or output as told in function block of Table1.

Export gpio pins:
echo 45 > /sys/class/gpio/export
Set direction for pins:
echo out > /sys/class/gpio/gpio45/direction

3. Make pin as input or output as told in function block of Table1.
4. Make New folder with name Lift elevator and go to that folder using
 command

mkdir traffic_light—press enter
 cd lift_traffic_light—press enter
5. create and open a file with command
 vim traffic_light.c
6. write a program and save it.

Now compile and run the program using command
gcc traffic_light.c -o traffic_light –press enter
./traffic_light –press enter
OR
g++ stepper.cpp –o stepper –press enter
./stepper -- enter

2.8 Oral Questions:
3) How to activate any pin as Input or output? Using command and through program?
4) What is GPIO?
5) How many pins are there of GPIO ?
6) What is minicom?

15SNJB’s .K B J COLLEGE OF ENGINEERING CHANDWAD

[Type text]

Assignment: Group A 6

Regularity (2) Performance(5) Oral(3) Total (10) Dated Sign

Title of Assignment: Lex and Yacc

Problem Definition: Write an application to parse input text file concurrently and compare the
result of concurrent parsing with serial parsing (Use concurrent YACC parser)

6.1 Perquisite: lex and yacc, openmp

6.2 Learning Objective: To achieve concurrent parsing and compare result with serial .

6.3 Relevant Theory / Literature Survey:

6.3.1 Introduction
Compilation steps: following diagram shows the compilation steps.

16SNJB’s .K B J COLLEGE OF ENGINEERING CHANDWAD

[Type text]

The patterns in the above diagram is a file you create with a text editor. Lex will read
your patterns and generate C code for a lexical analyzer or scanner. The lexical analyzer
matches strings in the input, based on your patterns, and converts the strings to tokens. Tokens
are numerical representations of strings, and simplify processing. When the lexical analyzer
finds identifiers in the input stream it enters them in a symbol table. The symbol table may also
contain other information such as data type (integer or real) and location of each variable in
memory. All subsequent references to identifiers refer to the appropriate symbol table index.

The grammar in the above diagram is a text file you create with a text edtior. Yacc will
read your grammar and generate C code for a syntax analyzer or parser. The syntax analyzer
uses grammar rules that allow it to analyze tokens from the lexical analyzer and create a syntax
tree. The syntax tree imposes a hierarchical structure the tokens. For example, operator
precedence and associatively are apparent in the syntax tree. The next step, code generation,
does a depth-first walk of the syntax tree to generate code. Some compilers produce machine
code, while others, as shown above, output assembly language.

6.4 Lex Theory
During the first phase the compiler reads the input and converts strings in the source to

tokens. With regular expressions we can specify patterns to lex so it can generate code that will
allow it to scan and match strings in the input. Each pattern specified in the input to lex has an
associated action. Typically an action returns a token that represents the matched string for
subsequent use by the parser. Initially we will simply print the matched string rather than return
a token value. The following represents a simple pattern, composed of a regular expression,

17SNJB’s .K B J COLLEGE OF ENGINEERING CHANDWAD

[Type text]

that scans for identifiers. Lex will read this pattern and produce C code for a lexical analyzer
that scans for identifiers.
letter(letter|digit)*

Table 1. Pattern matching

Table 2.Pattern matching examples

6.5 Yacc Theory
Grammars for yacc are described using a variant of Backus Naur Form (BNF). This technique,
pioneered by John Backus and Peter Naur, was used to describe ALGOL60. A BNF grammar
can be used to express context-free languages. Most constructs in modern programming

18SNJB’s .K B J COLLEGE OF ENGINEERING CHANDWAD

[Type text]

languages can be represented in BNF. For example, the grammar for an expression that
multiplies and adds numbers is
E -> E + E E -> E * E E -> id
Three productions have been specified. Terms that appear on the left-hand side (lhs) of a
production, such as E (expression) are nonterminals. Terms such as id (identifier) are terminals
(tokens returned by lex) and only appear on the right-hand side (rhs) of a production. This
grammar specifies that an expression may be the sum of two expressions, the product of two
expressions, or an identifier. We can use this grammar to generate expressions:
E -> E * E (r2) -> E * z (r3) -> E + E * z (r1) -> E + y * z (r3) -> x + y * z (r3)
At each step we expanded a term and replace the lhs of a production with the corresponding
rhs. The numbers on the right indicate which rule applied. To parse an expression we need to do
the reverse operation. Instead of starting with a single nonterminal (start symbol) and generating
an expression from a grammar we need to reduce an expression to a single nonterminal. This is
known as bottom-up or shift-reduce parsing and uses a stack for storing terms.

6.6 Procedure Run Program for serial parsing:

1. $lex abc.l
2. $yacc –d abc.y
3. $gcc y.tab.c lex.yy.c
4. $./a.out file1.txt

Figure 2. Building a Compiler with Lex/Yacc

1.8 Procedure Run Program for concurrent parsing:
1. $lex abc.l
2. $yacc –d abc.y
3. $gcc y.tab.c lex.yy.c –ll
4. $gcc openmp.c –fopenmp –o p
5. ./p file1.txt file2.txt file3.txt

19SNJB’s .K B J COLLEGE OF ENGINEERING CHANDWAD

[Type text]

 Figure 1:Package diagram

figure 2:Activity diagram with fork

 figure 3:Activity diagram

20SNJB’s .K B J COLLEGE OF ENGINEERING CHANDWAD

[Type text]

figure 4:Sequence diagram

figure 5:Deployment diagram

21SNJB’s .K B J COLLEGE OF ENGINEERING CHANDWAD

[Type text]

figure 6: Use Case diagram

1.9 Oral Questions:

7) What is lex?
8) What is yacc?
9) What is difference between serial and concurrent execution and how you have achieved

in your program?

22SNJB’s .K B J COLLEGE OF ENGINEERING CHANDWAD

[Type text]

Assignment: B1

Regularity (2) Performance(5) Oral(3) Total (10) Dated Sign

Title of Assignment: PWM

Problem Definition: Write an application to and demonstrate the change in BeagleBoard/
ARM Cortex
A5 /Microprocessor /CPU frequency or square wave of programmable frequency.

1.1 Perquisite: Beaglebone Black, minicom

1.2 Learning Objective: To simulate the operations of LIFT on BBB.

1.3 Relevant Theory / Literature Survey:

1.3 Introduction

The element14 BeagleBone Black is identical in technical design and functionality as
the specified BeagleBoard.org product (BeagleBone Black) and runs on the version of the
software provided by BeagleBoard.org to element14. General support for this board is available
from the BeagleBoard.org community.

Pulse Width Modulation (or PWM) is a technique for controlling power. We also use it
here to control the brightness of each of the LEDs.
The diagram below shows the signal from one of the GPIO pins on the BBB.

23SNJB’s .K B J COLLEGE OF ENGINEERING CHANDWAD

[Type text]

Every 1/5000 of a second, the PWM output will produce a pulse from 3.3V down to 0V.
The length of this pulse is controlled by the 'set_duty_cycle' function.
If the output is high for 90% of the time then the load will get 90% of the power delivered to it.
We cannot see the LEDs turning on and off at that speed, so to us, it just looks like the
brightness is different.

1.4 Configuring Pin 13 on P8 Header for PWM

The BBB was specifically designed to be a dynamic piece of hardware, enabling third-party
developers to create their own custom configurations and extensions known as capes. The board
is so flexible, it can change its hardware configuration at runtime using an in-kernel mechanism
known as the Cape Manager in conjunction with Device Tree Overlays.The Device Tree
consists of a set of human readable text files known as DTS files that end in the “.dts”
extension. DTS files can be edited using a simple text editor to set the configuration for a
particular pin. These source files then get compiled into DTB files, a binary format ending in
the “.dtbo” extension. This process creates what are known as device tree fragments or
overlays. The kernels Cape Manager can then dynamically load and unload the DTB files post-
boot as well as at runtime to set the hardware configuration.

1
2
3
4
5
6

root@beaglebone:/lib/firmware# ls *pwm*
am33xx_pwm-00A0.dtbo
am33xx_pwm-00A0.dts
bone_pwm_P8_13-00A0.dtbo
bone_pwm_P8_13-00A0.dts
...

All we need to do is load them using the Cape Manager, but first, lets get acquainted with a
very useful command that will help us determine if our overlays were properly loaded:

24SNJB’s .K B J COLLEGE OF ENGINEERING CHANDWAD

[Type text]

1
2
3
4
5
6
7

root@beaglebone:~# more /sys/devices/bone_capemgr.8/slots
0: 54:PF---
1: 55:PF---
2: 56:PF---
3: 57:PF---
4: ff:P-O-L Bone-LT-eMMC-2G,00A0,Texas Instrument,BB-BONE-EMMC-2G
5: ff:P-O-L Bone-Black-HDMI,00A0,Texas Instrument,BB-BONELT-HDMI

Out of the box, the BBB shows the above slots. Lets add two more slots to configure pin 13 on
header P8 for PWM by executing the following commands:

1
2

root@beaglebone:~# echo am33xx_pwm > /sys/devices/bone_capemgr.8/slots
root@beaglebone:~# echo bone_pwm_P8_13 > /sys/devices/bone_capemgr.8/slots

To confirm the overlays loaded properly we run the slots command again:

1
2
3
4
5
6
7
8
9

root@beaglebone:~# more /sys/devices/bone_capemgr.8/slots
0: 54:PF---
1: 55:PF---
2: 56:PF---
3: 57:PF---
4: ff:P-O-L Bone-LT-eMMC-2G,00A0,Texas Instrument,BB-BONE-EMMC-2G
5: ff:P-O-L Bone-Black-HDMI,00A0,Texas Instrument,BB-BONELT-HDMI
7: ff:P-O-L Override Board Name,00A0,Override Manuf,am33xx_pwm
8: ff:P-O-L Override Board Name,00A0,Override Manuf,bone_pwm_P8_13

Our board is now configured for PWM on pin13 of the P8 header! Before we move on,
however, it’s worth noting these changes are not permanent. If you power off the board, the
PWM slots we just added will disappear. Thankfully, we don’t have to repeat the above steps
each time we power up the board. The Cape Manager supports a method to load the overlays at
boot time by adding the following argument to the “uEnv.txt” file:

1 capemgr.enable_partno=am33xx_pwm,bone_pwm_P8_13

Make sure to append the argument in a single line like this:

1
2

root@beaglebone:~# more /media/BEAGLEBONE/uEnv.txt
optargs=quiet drm.debug=7 capemgr.enable_partno=am33xx_pwm,bone_pwm_P8_13

1.5 Oral Questions:

1) What are the PWM?
2) What is use of PWM and what are the pins numbers used in BBB?

25SNJB’s .K B J COLLEGE OF ENGINEERING CHANDWAD

[Type text]

3) What is duty cycle?

26SNJB’s .K B J COLLEGE OF ENGINEERING CHANDWAD

[Type text]

Assignment: Group C1

Regularity (2) Performance(5) Oral(3) Total (10) Dated Sign

Title of Assignment: Stepper Motor

Problem Definition: Develop Robotics(stepper motor) Application using Beagle Board.

1.1 Perquisite: Beaglebone Black, minicom

1.2 Learning Objective: To simulate the operations of LIFT on BBB.

1.3 Relevant Theory / Literature Survey:

1.3 Introduction

The element14 BeagleBone Black is identical in technical design and functionality as
the specified BeagleBoard.org product (BeagleBone Black) and runs on the version of the
software provided by BeagleBoard.org to element14. General support for this board is available
from the BeagleBoard.org community.

1.4 CONNECTOR DETAILS:

Connector
Number

PIN

Number

PIN Description PIN connects to board Function

P9 1,2 GND GND(25pin) GND

P9 5 VCC(5V) VCC(26pin) VCC

P9 11 GPIO0[30] FRC-21pin Out

P9 12 GPIO1[28] FRC-22pin Out

P9 13 GPIO0[31] FRC-19pin Out

P9 14 GPIO1[18] FRC-20pin Out

27SNJB’s .K B J COLLEGE OF ENGINEERING CHANDWAD

[Type text]

Table 1: Pins for stepper motor

1.5 How Stepper Motors Work
Stepper motors consist of a permanent magnetic rotating shaft, called the rotor, and
electromagnets on the stationary portion that surrounds the motor, called the stator. Figure 1
illustrates one complete rotation of a stepper motor. At position 1, we can see that the rotor is
beginning at the upper electromagnet, which is currently active (has voltage applied to it). To
move the rotor clockwise (CW), the upper electromagnet is deactivated and the right
electromagnet is activated, causing the rotor to move 90 degrees CW, aligning itself with the
active magnet. This process is repeated in the same manner at the south and west
electromagnets until we once again reach the starting position.

Figure 1
In the above example, we used a motor with a resolution of 90 degrees or demonstration
purposes. In reality, this would not be a very practical motor for most applications. The average
stepper motor's resolution -- the amount of degrees rotated per pulse -- is much higher than this.
For example, a motor with a resolution of 5 degrees would move its rotor 5 degrees per step,
thereby requiring 72 pulses (steps) to complete a full 360 degree rotation.
You may double the resolution of some motors by a process known as "half-stepping". Instead
of switching the next electromagnet in the rotation on one at a time, with half stepping you turn
on both electromagnets, causing an equal attraction between, thereby doubling the resolution.
As you can see in Figure 2, in the first position only the upper electromagnet is active, and the
rotor is drawn completely to it. In position 2, both the top and right electromagnets are active,
causing the rotor to position itself between the two active poles. Finally, in position 3, the top

28SNJB’s .K B J COLLEGE OF ENGINEERING CHANDWAD

[Type text]

magnet is deactivated and the rotor is drawn all the way right. This process can then be repeated
for the entire rotation.

Figure 2
There are several types of stepper motors. 4-wire stepper motors contain only two
electromagnets, however the operation is more complicated than those with three or four
magnets, because the driving circuit must be able to reverse the current after each step. For our
purposes, we will be using a 6-wire motor.
The specific stepper motor we are using for our experiments (ST-02: 5VDC, 5 degrees per step)
has 6 wires coming out of the casing. If we follow Figure 3, the electrical equivalent of the
stepper motor, we can see that 3 wires go to each half of the coils, and that the coil windings are
connected in pairs. This is true for all four-phase stepper motors.

Figure 3
However, if you do not have an equivalent diagram for the motor you want to use, you can
make a resistance chart to decipher the mystery connections. There is a 13 ohm resistance
between the center-tap wire and each end lead, and 26 ohms between the two end leads. Wires
originating from separate coils are not connected, and therefore would not read on the ohm
meter.

29SNJB’s .K B J COLLEGE OF ENGINEERING CHANDWAD

[Type text]

1.6 Advantages and disadvantages of stepper motors
The reason for using a stepper motor is to achieve precise control: you can make it move

through a defined angle.
Stepper motors can sometimes be quite jerky, because they start and stop each step with

a sudden impulse, which isn't always what you want if you're trying to build a precision
machine.

1.7 Oral Questions:
1) How stepper motor works?
2) What are the application of stepper motor?

